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ABSTRACT

A method is presented for computing initial vectors to be used

in conjunction with a numerical optimization procedure for minimizing

the probability of misclassification. The method is similar to that

presented in [6]. Preliminary numerical results of both procedures are

presented.
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I. Introduction

Consider a set of m distinct populations Il', 12"'" m with

positive a priori probabilities al, a2 ,...,am and n-dimensional multivariate

normal conditional density functions defined for x = (x,...,xn)T Rn by

p() (2T)-n/2 IE-1/ 2  1 ,T -1mi)
SPi(x) i exp- (xii(xi)], i = , 2,...,m.

The parameters pi and I are assumed known with Ei positive definite and

symmetric. If B is a nonzero 1 x n vector then the populations 1i have

transformed univariate normal conditional density functions defined for

y = Bx R by

-1/2 T -1/2 (y-BI 2

pi(y,B) = (27) (BEiB ) exp i = 1 2,...,m.
2BE B

Employing a Bayes optimal (maximum likelihood) classification procedure,

the probability of misclassifying a transformed observation y = Bx E R as a

function of B is given, [1), [31, by

g(B) 1- max i(y,B)dy

The resulting optimization problem can then be stated as follows

(see [31):
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Determine a 1 x n vector B of norm one such that

g(B) = min g(C).

11c1 =1

A solution B to the above minimization problem cannot, in general, be

obtained in closed form, and the use of some numerical optimization

procedure is necessary. Any such optimization algorithm requires an initial

vector B . In Section 2 we present a procedure for computing an initial
o

vector. The procedure is similar to the procedure presented in [6]. Both

procedures produce a B by solving a related fixed point problem which
0

results when one assumes that

C 1 = C 2 = ... = m = .
1 2 m

The fixed point problem is solved iteratively and also requires an initial

guess C . Preliminary numerical results for various choices of E and C
0o

are presented for both procedures.
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2. A Method For Determining Initial Vectors

Let B be a nonzero 1 x n vector, and for i # j, let gij(B) denote

the pairwise probability of misclassification for Hi and j ; that is,

gij(B) = min {ciPi(y,B), a p (y,B)} dy

R

Then, it is well-known [2 ] that

m-1 m

g(B) gi (B)
i=l j=i+l

m-1 m
- l J~ RI min{aiPi (y,B),a p (y,B)}dy
i=l j=i+l R

m-1 m

< R {ai a pi(y,B)p (yB)} I1/ 2 dy

i=l J=i+l R

m-i m l'2
=m 1  Pi(yB)pj (yB)}/2 dy.

If i # j, and we let

fij(B) {pi(YB)p (y,B)}1/2 dy ,

R

then g(B) < f(B) where f(B) is given by

m-i m
f(B)= vi f (B)

i=1 J=i+1 i j ij



For the purpose.of obtaining a starting vector Bo we attempt to find a

minimum of f subject to the condition that Ei 
= Z , i = 1,2,...,m. In

this case, the expression for fij (B), i # j, is given, [5 , by

1 T T-1
fij (B) = (BI -Bi) (BB T ) (Bp -Bi).

The Gateaux differential, 6f(B;C), of f at nonzero B in the direction of

a 1 x n vector C is given by

m-1 m
6f(B;C) = I VWi 6f (B;C)

i=1 j=i+l

where

B )(p 7 CZB 2
fij (B;C) = T (B(pi -

ij BEB (BEB ) 2 }
If B is a nonzero 1 x n vector which minimizes f, then B satisfies the

vector equation

6f(B ; C) 0

6f(B ; Cn )  0

where C. , 1 < j < n, is the I x n vector with a one in the jth slot and

zeros elsewhere. Letting 6i j -1.1j , the resulting expression for

af
B is given, [5], by

m-I m B6 T
(*) - 6 2 (B6i. "2

i-i J=i+l BB T (BEBT 2
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Since f(tB) = f(B) for t / 0, and since f is a continuous function of B,

the problem reduces to minimizing f over the set of 1 x n vectors of norm

one.

Theorem 1. Let B be a 1 x n vector of norm one which minimizes f. Then
0

B is a fixed point of

T -1
H(B) = L(B) E

SIL(B) T- 11

where

m-1 m
L(B)= va-a (B6 )6

i=l j=i+l i ij

af
Proof: If B minimizes f, then = 0.

oo

Then from (*)

m-1 m B6 m-1 m EBTB
-o 0 (B 6 6

Letting

m-1 m
L(B (Bo6 )6

0 1 i o ij ii
i=1 j=i+l

we have

B ZBT L(B ) = B B Bo L(B)



Since B TB has rank one-and ZBT is the eigenvector of B TB

corresponding to the eigenvalue B EB T  it follows that there exists some
o o

A such that

T
L(B ) = XB .

Since B L(Bo ) > 0, it follows that . > 0. Then

1 T -1
Bo L(B ) E

and since B has norm one, it follows that A L(B )T Z-1

Hence, if B minimizes f, then
0

T -1
L(B o) T

B = _ H(B) .o L (B) T I o

Suppose that A is an n x n matrix satisfying A Z AT = I. For a

1 x n vector C, let

m-1 m
LA(C) = a. (CA6 )A6

i=1 j-=i+l ij

and let

LA(C) T

HA(C) =

S[LA(C)TJ T

ACA

Theorem 2. Let A be an n x n matrix such that A A = I.

(a) If C is a fixed point of HA, then B CA is a fixed point of H.
1 ICA I



(b) If B is a fixed point of H, then C = IBA I BA is a

fixed point of HA.

Proof:

(a) If C HA(C)= LA(C) T  we have ILA(C)T CA= LA(C)TA,

I ILA(C)T I I

and so IILA(C) T II IICAII = IILA(C)TAII. We also note that -1 = ATA and

L(CA) T = (A-1LA(C))T Then

H(B) H CA

CA T-
L

IICA)

I ( ICACAII
L(CA)

T Z-

L(CA) E

II L(CA)T C-1

(A LA(C))
T -

(A-1LA(C ) ) T -1

LA(C) (AT) -ATA

LA(C)T (AT ) - AT A I

LA(C) TA

I LA(C)TA I



LA (C) A

11 LA(C)T II IICAII

CA
= =B.

H CAJ

(b) If H(B) = B, then I L (B)T -1 A-1 ] I L(B)T E-1 II IIBA-1 I

-1
BA

Letting C = , we have

II BA-1 I

LA (C)T

HA(C) =II
LA(C) I

(BA-I 
I

S BA-1 TLA I A-1l I

LA (BA-1 T

SI LA(BA-)T II

= (A L(B))
T

S-1 -

(A L(B)) T

L (B) T ATAA-

L(B)T ATAA-1l

L(B)T -1 A-1
L (B )T Z-1 A-1

L(B) T Z-1 A11L(B) - A

L(B)T Z-1 II I BA -1

-1
BA C
BA -
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In light of Theorem 2, the problem of minimizing f reduces to

finding a fixed point of HA . Thus we have the following procedure:

a. Given a,, ,i' and i, 1 < i < m, compute E from El,...,Mm

(three different ways of computing E are discussed in

Section 3),

b. Determine A such that A AT = I.

c. Using an initial guess Co for the fixed point of HA, compute

successive vectors C using the mean iteration formula

(see [41])

n 1C C + H (C)
n+l n+l n n+l A n

d. If the sequence {C } converges to C, then C = HA(C), and
CA

B = is the initial vector for the numerical optimization
o CAIH

procedure used to minimize

g(B) = 1 - max aip(y,B)dy

R -

where the parameters for pi are given by i and ECi li<m

The procedure in [6] is the same as the above procedure with the

functions L, H, LA, and HA replaced with the functions F, G, FA, and GA,

respectively, where

m-1
F(B) = aiP i . (a ;B) ( -ili ,

j=l j j j+l j

and the indices for the p.'s are chosen (for a given B) such that
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BPi < BP 5 .. Bp
1 2 m

In(i /a ) B( )

a j J+1 (j+1 +j
j B(p -') 2

j+1 j

T -I
G F (B) i 

I IF(B)T -1II I

and FA, GA are the resulting expressions of F and G above when pi = AJi

and A AT = I.

At present there are no theoretical results which insure that the

sequence {C n  above always converges. Investigations into this and related

problems are underway.



3, Preliminary Numerical Results

For all of the results presented herein we used as signatures the

12-dimensional mean vectors pi and 12x12 covariance matrices Ci for

classes 1-9 of Flight Line 210.

As possible candidates for the common covariance matrix 2, we

investigated the following:

(1) (+ . .+9)

(2) = 9 i'

i=1l I i i I
i=1

9 a tr(E.)
(3) = 1i , tr(A) denotes the trace of A.

i=1 it r ( i)

As initial guesses, Co, for the fixed points we used both

Cma =k - , where I I rl = max l Ii- I

and

Cmi n  Uk r , where Ipk r = amin I Ii-j i I .
ij
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The results in Tables 1 and 2 below assumed equal a priori probabilities

(ai = 1/9). An unequal a priori probability case is presented in Table 3.

The following notation is used in the tables:

B -- The initial vector determined by the particular
o

starting procedure; that is, B is the computed fixed
0

point of either G or H.

Bmin -- The vector which minimizes g as determined by the

numerical optimization procedure when using B as an
0

initial vector.

g(B) -- The value of the probability of misclassification at

B for the general problem (distinct Z ) under consideration.

As can be seen from Tables 1 and 2 below, the procedure developed in

Section 2 produced the best results when E was computed using formula (2)

and C = C . The best results for the procedure developed in [61 were
o max

obtained when C was computed using formula (3) and C = Co max.
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Bo satisfying Bo satisfying

Formula used Bo = H(Bo) Bo = G(Bo)
to compute E

g(Bo)  g(Bmin ) (Bo) g(Bmin )

(1) 37.84 29.20 33.90 22.51

(2) 38.77 16.43 36.16 29.37

(3) 36.60 29.20 32.79 16.43

Table 1. C =C
o max

Bo satisfying B satisfying

Formula used Bo = H(Bo) Bo = G(Bo)

to compute E
g(Bo) g(B ) g(Bo) g(B0 min 0 min

(1) 37.66 29.20 29.82 22.51

(2) 39.49 22.51 31.32 29.20

(3) 36.54 29.20 31.26 29.20

Table 2. C =C
0 min
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B satisfying Bo satisfying
0 0

Formula used B = H(Bo)  B = G(Bo)

to compute
g(Bo)  g(Bm n) g(Bo)  g(Bmin

(2) 23.04 12.40 --- ---

(3) --- 26.59 12.40

a1l a 2 = .05, a = = 9 = .20, 4 = .10

a5 =  8 - .15, o6 = .02, a7 = "08

Table 3. C =C
o max
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